Now that we can generate a terrain, we need to make it look a little bit better.

So, what we are going to do is to strip out the red shader we used in the last tutorial, and replace it with a phong material, created by the createPhongMaterial function we used previously to add some lighting to our primitives.

function createPhongMaterial(baseColor) {
  var material = g_pack.createObject('Material');

  o3djs.effect.attachStandardShader(
      g_pack, material, g_lightPosition, 'phong');

  material.drawList = g_viewInfo.performanceDrawList;

  material.getParam('emissive').value = [0, 0, 0, 1];
  material.getParam('ambient').value = g_math.mulScalarVector(0.1, baseColor);
  material.getParam('diffuse').value = g_math.mulScalarVector(0.9, baseColor);
  material.getParam('specular').value = [.2, .2, .2, 1];
  material.getParam('shininess').value = 20;

  return material;
}

In order to apply the phong shader to our terrain, we need to first calculate the normal for each triangle in the terrain, and that required a bit of reworking the createLandscape function to use the VertexInfo object to make creating the indices easier. We create a stream for the position of the vertex, the normal, and the coords of the texture used, followed by some mundane setup.

function createLandscape(material) {
  var vertexInfo = o3djs.primitives.createVertexInfo();
  var positionStream = vertexInfo.addStream(
      3, o3djs.base.o3d.Stream.POSITION);
  var normalStream = vertexInfo.addStream(
      3, o3djs.base.o3d.Stream.NORMAL);
  var texCoordStream = vertexInfo.addStream(
      2, o3djs.base.o3d.Stream.TEXCOORD, 0);
	  
  var color;
  var avgColor;
  
  var startX = -50;
  var startY = 0;
  var startZ = -50;
  
  var XDelta = 1;
  var ZDelta = 1;
  var YMax = 30;
  var YMin = -30;
  var YDiff = YMax - YMin;
  
  var curX = startX;
  var curZ = startZ;
  var positionArray = [];
  var curIndex = 0;
  
  var uvCoords = [
    [0, 0],
    [1, 0],
    [1, 1],
    [0, 1]
  ];
  

Next, we create the position array for the vertices. The only change here is that we now have a multidimensional array for positionArray instead of a single dimentional array.

for(var i = 0; i < g_heightMapCanvas.width; i++) {
    for (var j = 0; j < g_heightMapCanvas.height; j++) {
      color = getPixelColor(i, j, g_heightMapImageData);
      avgColor = ((color[0] + color[1] + color[2]) / 3) / 255;
	  positionArray[curIndex] = [];
      positionArray[curIndex][0] = curX;
      positionArray[curIndex][1] = YMin + (YDiff * avgColor);
      positionArray[curIndex][2] = curZ;
      curIndex++;
      curZ = curZ + ZDelta;
    }
    curX = curX + XDelta;
    curZ = startZ;
  }
  


Here is where the fun begins. We set up the four vertices of our current block, and need to generate 2 triangles per block. So we add the three vertices to the position stream and the texture coordinates for those vertices to the texCoord stream. We then calculate the normal, which is the vector pointing perpendicular to the surface created by the three vertices

var vertexOffset = 0;
  var curPosIndex = 0;
  for(var i = 0; i < g_heightMapCanvas.width - 1; i++) {
    for (var j = 0; j < g_heightMapCanvas.height - 1; j++) {
	  var p1 = positionArray[curPosIndex];
	  var p2 = positionArray[curPosIndex + g_heightMapCanvas.height];
	  var p3 = positionArray[curPosIndex + g_heightMapCanvas.height + 1];
	  var p4 = positionArray[curPosIndex + 1];

      positionStream.addElementVector(p2);
	  texCoordStream.addElementVector(uvCoords[0]);
		
      positionStream.addElementVector(p1);
	  texCoordStream.addElementVector(uvCoords[1]);

      positionStream.addElementVector(p4);
	  texCoordStream.addElementVector(uvCoords[3]);
	  
	  var v1 = g_math.subVector(p1, p2);
	  var v2 = g_math.subVector(p4, p2);
	  var normal = g_math.cross(v1, v2);
	  normal = g_math.normalize(normal);
	  
	  normalStream.addElementVector(normal);
	  normalStream.addElementVector(normal);
	  normalStream.addElementVector(normal);

      vertexInfo.addTriangle(vertexOffset, vertexOffset + 1, vertexOffset + 2);
      vertexOffset = vertexOffset + 3;

We now rinse and repeat this process for the second triangle in our current block before iterating through the entire grid

positionStream.addElementVector(p4);
	  texCoordStream.addElementVector(uvCoords[1]);

      positionStream.addElementVector(p3);
	  texCoordStream.addElementVector(uvCoords[2]);

      positionStream.addElementVector(p2);
	  texCoordStream.addElementVector(uvCoords[3]);
	  
	  v1 = g_math.subVector(p3, p4);
	  v2 = g_math.subVector(p2, p4);
	  normal = g_math.cross(v1, v2);
	  normal = g_math.normalize(normal);
	  
	  normalStream.addElementVector(normal);
	  normalStream.addElementVector(normal);
	  normalStream.addElementVector(normal);
	  
      vertexInfo.addTriangle(vertexOffset , vertexOffset + 1, vertexOffset + 2);     
      vertexOffset = vertexOffset + 3;

      curPosIndex++;
    }
  }

And finally we return the shape created from this vertex data.

  return vertexInfo.createShape(g_pack, material);
} 

The simplified loadLandscape with all the effect and material code stripped out is as follows.

function loadLandscape()
{
  var landscapeMaterial = createPhongMaterial([1, 0, 0, 1]);
  var landscapeShape = createLandscape(landscapeMaterial);

  g_landscapeTransform = g_pack.createObject('Transform');
  g_landscapeTransform.addShape(landscapeShape);

  g_landscapeTransform.parent = g_3dRoot;

  landscapeShape.createDrawElements(g_pack, null);
}

Now when you view the scene, you will see the terrain begin looking like a real terrain. the only thing left to do now is to texture it.

Here is the full listing

o3djs.require('o3djs.util');
o3djs.require('o3djs.math');
o3djs.require('o3djs.rendergraph');
o3djs.require('o3djs.canvas');
o3djs.require('o3djs.quaternions');
o3djs.require('o3djs.event');
o3djs.require('o3djs.arcball');
o3djs.require('o3djs.primitives');
o3djs.require('o3djs.picking');
o3djs.require('o3djs.io');
o3djs.require('o3djs.pack');
o3djs.require('o3djs.scene');

// Events
// Run the init() function once the page has finished loading.
// Run the uninit() function when the page has is unloaded.
window.onload = init;
window.onunload = uninit;

// global variables
var g_o3dElement;
var g_o3d;
var g_math;
var g_client;
var g_pack;
var g_clock = 0;
var g_timeMult = 1;
var g_landscapeTransform;
var g_textCanvas;
var g_paint;
var g_canvasLib;
var g_3dRoot;
var g_hudRoot;
var g_viewInfo;
var g_hudViewInfo;
var g_keyPressDelta = 0.05;

var g_quaternions;
var g_aball;
var g_thisRot;
var g_lastRot;
var g_dragging = false;
var g_lightPosition = [10, 300, 7];
var g_camera = {
  eye: [0, 50, 10],
  target: [0, 0, 0]
};
var g_mouseX = 0;
var g_mouseY = 0;
var g_spinningObject = false;
var g_pickedInfo;
var g_treeInfo;  
var g_sampler;
var g_backgroundCanvas;
var g_backgroundRoot;
var g_backgroundViewInfo;
var g_backgroundCanvasLib;
var g_backgroundTexture;

var g_lastMouseX = 0;
var g_lastMouseY = 0;
var g_mouseXDelta = 0;
var g_mouseYDelta = 0;
var g_rotationDelta = 0.002;
var g_translationDelta = 0.2;
var g_mouseLocked = false;
var g_lookingDir = [0, 0, 0];

var g_htmlImage;
var g_heightMapCanvas;
var g_heightMapCanvasContext;
var g_heightMapImageData;
var g_landscapeLoaded = false;
var g_heightMapLoaded = false;
var g_initRun = false;

function createLandscape(material) {
  var vertexInfo = o3djs.primitives.createVertexInfo();
  var positionStream = vertexInfo.addStream(
      3, o3djs.base.o3d.Stream.POSITION);
  var normalStream = vertexInfo.addStream(
      3, o3djs.base.o3d.Stream.NORMAL);
  var texCoordStream = vertexInfo.addStream(
      2, o3djs.base.o3d.Stream.TEXCOORD, 0);
	  
  var color;
  var avgColor;
  
  var startX = -50;
  var startY = 0;
  var startZ = -50;
  
  var XDelta = 1;
  var ZDelta = 1;
  var YMax = 30;
  var YMin = -30;
  var YDiff = YMax - YMin;
  
  var curX = startX;
  var curZ = startZ;
  var positionArray = [];
  var curIndex = 0;
  
  var uvCoords = [
    [0, 0],
    [1, 0],
    [1, 1],
    [0, 1]
  ];
  
  for(var i = 0; i < g_heightMapCanvas.width; i++) {
    for (var j = 0; j < g_heightMapCanvas.height; j++) {
      color = getPixelColor(i, j, g_heightMapImageData);
      avgColor = ((color[0] + color[1] + color[2]) / 3) / 255;
	  positionArray[curIndex] = [];
      positionArray[curIndex][0] = curX;
      positionArray[curIndex][1] = YMin + (YDiff * avgColor);
      positionArray[curIndex][2] = curZ;
      curIndex++;
      curZ = curZ + ZDelta;
    }
    curX = curX + XDelta;
    curZ = startZ;
  }
  
  var vertexOffset = 0;
  var curPosIndex = 0;
  for(var i = 0; i < g_heightMapCanvas.width - 1; i++) {
    for (var j = 0; j < g_heightMapCanvas.height - 1; j++) {
	  var p1 = positionArray[curPosIndex];
	  var p2 = positionArray[curPosIndex + g_heightMapCanvas.height];
	  var p3 = positionArray[curPosIndex + g_heightMapCanvas.height + 1];
	  var p4 = positionArray[curPosIndex + 1];

      positionStream.addElementVector(p2);
	  texCoordStream.addElementVector(uvCoords[0]);
		
      positionStream.addElementVector(p1);
	  texCoordStream.addElementVector(uvCoords[1]);

      positionStream.addElementVector(p4);
	  texCoordStream.addElementVector(uvCoords[3]);
	  
	  var v1 = g_math.subVector(p1, p2);
	  var v2 = g_math.subVector(p4, p2);
	  var normal = g_math.cross(v1, v2);
	  normal = g_math.normalize(normal);
	  
	  normalStream.addElementVector(normal);
	  normalStream.addElementVector(normal);
	  normalStream.addElementVector(normal);

      vertexInfo.addTriangle(vertexOffset, vertexOffset + 1, vertexOffset + 2);
      vertexOffset = vertexOffset + 3;
	  
      positionStream.addElementVector(p4);
	  texCoordStream.addElementVector(uvCoords[1]);

      positionStream.addElementVector(p3);
	  texCoordStream.addElementVector(uvCoords[2]);

      positionStream.addElementVector(p2);
	  texCoordStream.addElementVector(uvCoords[3]);
	  
	  v1 = g_math.subVector(p3, p4);
	  v2 = g_math.subVector(p2, p4);
	  normal = g_math.cross(v1, v2);
	  normal = g_math.normalize(normal);
	  
	  normalStream.addElementVector(normal);
	  normalStream.addElementVector(normal);
	  normalStream.addElementVector(normal);
	  
      vertexInfo.addTriangle(vertexOffset , vertexOffset + 1, vertexOffset + 2);     
      vertexOffset = vertexOffset + 3;

      curPosIndex++;
    }
  }
  return vertexInfo.createShape(g_pack, material);
  
} 

function createPhongMaterial(baseColor) {
  // Create a new, empty Material object.
  var material = g_pack.createObject('Material');

  o3djs.effect.attachStandardShader(
      g_pack, material, g_lightPosition, 'phong');

  material.drawList = g_viewInfo.performanceDrawList;

  // Assign parameters to the phong material.
  material.getParam('emissive').value = [0, 0, 0, 1];
  material.getParam('ambient').value = g_math.mulScalarVector(0.1, baseColor);
  material.getParam('diffuse').value = g_math.mulScalarVector(0.9, baseColor);
  material.getParam('specular').value = [.2, .2, .2, 1];
  material.getParam('shininess').value = 20;

  return material;
}

function getPixelColor(x, y, imageData) {
  var index=(x * 4) * imageData.width + (y * 4);
  var colArray = [];
  
  colArray[0] = imageData.data[index];	  
  colArray[1] = imageData.data[index+1];
  colArray[2] = imageData.data[index+2];	  
  colArray[3] = imageData.data[index+3];	 
  return colArray;
}
function loadHeightMap(image)
{
  g_heightMapCanvas=document.createElement("canvas");
  g_heightMapCanvasContext=g_heightMapCanvas.getContext("2d");

  g_heightMapCanvas.width= image.width;
  g_heightMapCanvas.height=image.height;
  g_heightMapCanvasContext.drawImage(image,0,0);
 
  g_heightMapImageData = g_heightMapCanvasContext.getImageData(0,0, image.width, image.height);
  
  g_heightMapLoaded = true;
}
 
 
function loadLandscape()
{
  // Create a Material for the mesh.
  var landscapeMaterial = createPhongMaterial([1, 0, 0, 1]);
  
  // Create the Shape for the landscape mesh and assign its material.
  var landscapeShape = createLandscape(landscapeMaterial);

  // Create a new transform and parent the Shape under it.
  g_landscapeTransform = g_pack.createObject('Transform');
  g_landscapeTransform.addShape(landscapeShape);

  // Parent the landscape's transform to the client root.
  g_landscapeTransform.parent = g_3dRoot;

  // Generate the draw elements for the landscape shape.
  landscapeShape.createDrawElements(g_pack, null);

}

//Event handler for the mousedown event
function mouseDown(e) {
  if (e.button == 0) {
      var worldRay = o3djs.picking.clientPositionToWorldRay(
          e.x,
          e.y,
          g_viewInfo.drawContext,
          g_client.width,
          g_client.height);  
      g_treeInfo.update();
      g_pickedInfo = g_treeInfo.pick(worldRay);
      if (g_pickedInfo) {
        g_spinningObject = true;

      }
   } else {
    g_lastRot = g_thisRot;
    g_aball.click([e.x, e.y]);
    g_dragging = true;
   }
   g_mouseLocked = !g_mouseLocked
}

//Event handler for the mousemove event
function mouseMove(e) {
  g_lastMouseX = g_mouseX;
  g_lastMouseY = g_mouseY;
  g_mouseX = e.x;
  g_mouseY = e.y;
  
  g_mouseXDelta = g_mouseX - g_lastMouseX;
  g_mouseYDelta = g_mouseY - g_lastMouseY;
  
  if (g_mouseLocked) {
    var viewDir = g_math.subVector(g_camera.target, g_camera.eye);
   
    var rotatedViewDir = [];
    rotatedViewDir[0] = (Math.cos(g_mouseXDelta * g_rotationDelta) * viewDir[0]) - (Math.sin(g_mouseXDelta * g_rotationDelta) * viewDir[2]);
    rotatedViewDir[1] = viewDir[1];
    rotatedViewDir[2] = (Math.cos(g_mouseXDelta * g_rotationDelta) * viewDir[2]) + (Math.sin(g_mouseXDelta * g_rotationDelta) * viewDir[0]);
    viewDir = rotatedViewDir;
    rotatedViewDir[0] = viewDir[0];
    rotatedViewDir[1] = (Math.cos(g_mouseYDelta * g_rotationDelta * -1) * viewDir[1]) - (Math.sin(g_mouseYDelta * g_rotationDelta * -1) * viewDir[2]);
    rotatedViewDir[2] = (Math.cos(g_mouseYDelta * g_rotationDelta * -1) * viewDir[2]) + (Math.sin(g_mouseYDelta * g_rotationDelta * -1) * viewDir[1]);
    g_lookingDir = rotatedViewDir;
    g_camera.target = g_math.addVector(rotatedViewDir, g_camera.eye);
    g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye,
                                                     g_camera.target,
                                                     [0, 1, 0]);
    
  }
    
   
  
}
 
//Event handler for the mouseup event
function mouseUp(e) {
  g_dragging = false;
  g_spinningObject = false;
}

//Even handler for the scroll button
function scrollMe(e) {
  if (e.deltaY) {
	var view = g_math.subVector(g_camera.eye, g_camera.target);
    view = g_math.mulScalarVector((e.deltaY < 0 ? 11 : 13) / 12, view);
	g_camera.eye = g_math.addVector(view, g_camera.target);
    g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye,
                                                       g_camera.target,
                                                       [0, 1, 0]);
 }
}         

// Updates the transform info for our scene
function updateInfo() {
  if (!g_treeInfo) {
    g_treeInfo = o3djs.picking.createTransformInfo(g_3dRoot, null);
  }
  g_treeInfo.update();
}

function drawText(str) {
  g_textCanvas.canvas.clear([0.5, 0.5, 0.5, 0.5]);

  // Reuse the global paint object
  var paint = g_paint;
  paint.color = [1, 1, 1, 1];
  paint.textSize = 12;
  paint.textTypeface = 'Comic Sans MS';
  paint.textAlign = g_o3d.CanvasPaint.LEFT;
  paint.shader = null;
  g_textCanvas.canvas.drawText(str, 10, 30, paint);

  g_textCanvas.updateTexture();
}         
 
/**
 * This method gets called every time O3D renders a frame.  Here's
 * where we update the landscape's transform to make it spin.
 * @param {o3d.RenderEvent} renderEvent The render event object that 
 * gives us the elapsed time since the last time a frame was rendered.
 */
function renderCallback(renderEvent) {
  g_clock += renderEvent.elapsedTime * g_timeMult;
  g_camera.eye
  drawText("(" + (Math.round(g_camera.eye[0] * 100) / 100) + "," + (Math.round(g_camera.eye[1] * 100) / 100) +"," + (Math.round(g_camera.eye[2] * 100) / 100) + ")   " + "(" + (Math.round(g_lookingDir[0] * 100) / 100) + "," + (Math.round(g_lookingDir[1] * 100) / 100) +"," + (Math.round(g_lookingDir[2] * 100) / 100) + ")");
  if (g_spinningObject) {
    
     var pickTrans = g_pickedInfo.shapeInfo.parent.transform;
     pickTrans.rotateX(0.05);  
     pickTrans.rotateY(0.05);  
  }  
  updateInfo();  
}

/**
 * Function performing the rotate action in response to a key-press.
 * Rotates the scene based on key pressed. (w ,s, a, d). Note that the
 * x,y-axis referenced here are relative to the current view of scene.
 * @param {keyPressed} The letter pressed, in lower case.
 * @param {delta} The angle by which the scene should be rotated.
 * @return true if an action was taken.
 */
function keyPressedAction(keyPressed, delta) {
  var actionTaken = false;
  switch(keyPressed) {
    case 'a':
		var eyeOriginal = g_camera.eye;
		var targetOriginal = g_camera.target;
		var viewEye = g_math.subVector(g_camera.eye, g_camera.target);
		var viewTarget = g_math.subVector(g_camera.target, g_camera.eye);
		viewEye = g_math.addVector([g_translationDelta * -1, 0, 0], viewEye);
		viewTarget = g_math.addVector([g_translationDelta * -1, 0, 0], viewTarget);
		g_camera.eye = g_math.addVector(viewEye, targetOriginal);
		g_camera.target = g_math.addVector(viewTarget, eyeOriginal);

		g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye,
                                                       g_camera.target,
                                                       [0, 1, 0]);
      actionTaken = true;
      break;
    case 'd':
		var eyeOriginal = g_camera.eye;
		var targetOriginal = g_camera.target;
		var viewEye = g_math.subVector(g_camera.eye, g_camera.target);
		var viewTarget = g_math.subVector(g_camera.target, g_camera.eye);
		viewEye = g_math.addVector([g_translationDelta, 0, 0], viewEye);
		viewTarget = g_math.addVector([g_translationDelta, 0, 0], viewTarget);
		g_camera.eye = g_math.addVector(viewEye, targetOriginal);
		g_camera.target = g_math.addVector(viewTarget, eyeOriginal);

		g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye,
                                                       g_camera.target,
                                                       [0, 1, 0]);
      actionTaken = true;
      break;
    case 'w':
		var view = g_math.subVector(g_camera.eye, g_camera.target);
		view = g_math.mulScalarVector( 11 / 12, view);
		g_camera.eye = g_math.addVector(view, g_camera.target);
		g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye,
                                                       g_camera.target,
                                                       [0, 1, 0]);
      actionTaken = true;
      break;
    case 's':
		var view = g_math.subVector(g_camera.eye, g_camera.target);
		view = g_math.mulScalarVector( 13 / 12, view);
		g_camera.eye = g_math.addVector(view, g_camera.target);
		g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye,
                                                       g_camera.target,
                                                       [0, 1, 0]);
      actionTaken = true;
      break;
  }
  return actionTaken;
}

/**
 * Callback for the keypress event.
 * Invokes the action to be performed for the key pressed.
 * @param {event} keyPress event passed to us by javascript.
 */
function keyPressedCallback(event) {
  event = event || window.event;

  // Ignore accelerator key messages.
  if (event.metaKey)
    return;

  var keyChar =String.fromCharCode(o3djs.event.getEventKeyChar(event));
  // Just in case they have capslock on.
  keyChar = keyChar.toLowerCase();

  if (keyPressedAction(keyChar, g_keyPressDelta)) {
    o3djs.event.cancel(event);
  }
}         

/**
 * Creates a phong material based on the given single color.
 * @param {Array} baseColor An array with 4 entries, the R,G,B, and A components
 *   of a color.
 * @return {Material} A phong material whose overall pigment is baseColor.
 */
function createPhongMaterial(baseColor) {
  // Create a new, empty Material object.
  var material = g_pack.createObject('Material');

  o3djs.effect.attachStandardShader(
      g_pack, material, g_lightPosition, 'phong');

  material.drawList = g_viewInfo.performanceDrawList;

  // Assign parameters to the phong material.
  material.getParam('emissive').value = [0, 0, 0, 1];
  material.getParam('ambient').value = g_math.mulScalarVector(0.1, baseColor);
  material.getParam('diffuse').value = g_math.mulScalarVector(0.9, baseColor);
  material.getParam('specular').value = [.2, .2, .2, 1];
  material.getParam('shininess').value = 20;

  return material;
}

/**
 * Creates the client area.
 */
function init() {
  o3djs.util.makeClients(initStep2, 'LargeGeometry');
}

/**
 * Initializes O3D.
 * @param {Array} clientElements Array of o3d object elements.
 */
function initStep2(clientElements) {
  // Initializes global variables and libraries.
  g_o3dElement = clientElements[0];
  g_client = g_o3dElement.client;
  g_o3d = g_o3dElement.o3d;
  g_math = o3djs.math;
  g_quaternions = o3djs.quaternions;
   
  // Initialize O3D sample libraries.
  o3djs.base.init(g_o3dElement);

  // Create a pack to manage the objects created.
  g_pack = g_client.createPack();

  //Create the arcball which is used for the rotation
  g_aball = o3djs.arcball.create(400, 400);
   
  //Initialise rotation matrixes
  g_lastRot = g_math.matrix4.identity();
  g_thisRot = g_math.matrix4.identity();

  // Create 2 root transforms, one for the 3d parts and 2d parts.
  // This is not strictly neccassary but it is helpful.
  g_3dRoot = g_pack.createObject('Transform');
  g_hudRoot = g_pack.createObject('Transform');
  g_backgroundRoot = g_pack.createObject('Transform');

  // Create the render graph for a view.
  g_viewInfo = o3djs.rendergraph.createBasicView(
      g_pack,
      g_3dRoot,
      g_client.renderGraphRoot);

  // Create a second view for the hud. 
  g_hudViewInfo = o3djs.rendergraph.createBasicView(
       g_pack,
       g_hudRoot,
       g_client.renderGraphRoot);


  // Turn off clearing the color for the hud since that would erase the
  // 3d parts but leave clearing the depth and stencil so the HUD is
  //  unaffected by anything done by the 3d parts.
  g_hudViewInfo.clearBuffer.clearColorFlag = false;
  g_viewInfo.clearBuffer.clearColorFlag = false;

  // Create a view for the background. 
  g_backgroundViewInfo = o3djs.rendergraph.createBasicView(
       g_pack,
       g_backgroundRoot,
       g_client.renderGraphRoot);

  // Make sure the background gets drawn first
  g_viewInfo.root.priority = g_backgroundViewInfo.root.priority + 1;
  // Make sure the hud gets drawn after the 3d stuff
  g_hudViewInfo.root.priority = g_viewInfo.root.priority + 1;
  
  //g_backgroundViewInfo.root.priority + 5;
  // Set up a perspective view
  g_viewInfo.drawContext.projection = g_math.matrix4.perspective(
      g_math.degToRad(30), // 30 degree fov.
      g_client.width / g_client.height,
      1,                  // Near plane.
      5000);              // Far plane.

  // Set up our view transformation to look towards the world origin 
  // where the landscape is located.
  g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye, //eye
                                            g_camera.target,  // target
                                            [0, 1, 0]); // up
                                             
  //Set up the 2d orthographic view
  g_hudViewInfo.drawContext.projection = g_math.matrix4.orthographic(
      0 + 0.5,
      g_client.width + 0.5,
      g_client.height + 0.5,
      0 + 0.5,
      0.001,
      1000);

  g_hudViewInfo.drawContext.view = g_math.matrix4.lookAt(
      [0, 0, 1],   // eye
      [0, 0, 0],   // target
      [0, 1, 0]);  // up                                                     

  //Set up the 2d orthographic view
  g_backgroundViewInfo.drawContext.projection = g_math.matrix4.orthographic(
      0 + 0.5,
      g_client.width + 0.5,
      g_client.height + 0.5,
      0 + 0.5,
      0.001,
      1000);

  g_backgroundViewInfo.drawContext.view = g_math.matrix4.lookAt(
      [0, 0, 1],   // eye
      [0, 0, 0],   // target
      [0, 1, 0]);  // up     

  
  // Create the global paint object that's used by draw operations.
  g_paint = g_pack.createObject('CanvasPaint');

  // Creates an instance of the canvas utilities library.
  g_canvasLib = o3djs.canvas.create(g_pack, g_hudRoot, g_hudViewInfo);
   
  // Create a canvas that will be used to display the text.
  g_textCanvas = g_canvasLib.createXYQuad(0, 0, 0, 400, 50, true);


  g_backgroundCanvasLib = o3djs.canvas.create(g_pack, g_backgroundRoot, g_backgroundViewInfo);
  g_backgroundCanvas = g_backgroundCanvasLib.createXYQuad(0, 0, 0, g_client.width, g_client.height, true);

  g_backgroundCanvas.canvas.clear([0, 0, 0, 1]);


  o3djs.io.loadTexture(g_pack, 'tutorial18/bg.jpg', function(texture, exception) {
    if (exception) {
      alert(exception);
    } else {
      if (g_backgroundTexture) {
        g_pack.removeObject(g_backgroundTexture);
      }

      g_backgroundTexture = texture;
      g_backgroundCanvas.canvas.drawBitmap(g_backgroundTexture, 0, g_client.width);
      g_backgroundCanvas.updateTexture();
    }
  });  

  if (g_heightMapLoaded == true) {
	loadLandscape();
  }
  // Set our render callback for animation.
  // This sets a function to be executed every time frame is rendered.
  g_client.setRenderCallback(renderCallback);
   
  //Set up a callback to interpret keypresses
  window.document.onkeypress = keyPressedCallback;

  //Set up mouse events
  o3djs.event.addEventListener(g_o3dElement, 'mousedown', mouseDown);
  o3djs.event.addEventListener(g_o3dElement, 'mousemove', mouseMove);
  o3djs.event.addEventListener(g_o3dElement, 'mouseup', mouseUp);
  o3djs.event.addEventListener(g_o3dElement, 'wheel', scrollMe);           
  g_initRun = true;
}

/**
 * Removes callbacks so they aren't called after the page has unloaded.
 */
function uninit() {
  if (g_client) {
    g_client.cleanup();
  }
}
Share