Up to now, we have been able to use a texture shader, or the built-in phong shader. Now what we are going to do is combine the texture shader with a phong shader.
What this will do is enable us to have lighting effects combined with a texture for our terrain.
In the Javascript code, there is not much that has not been covered in previous tutorials, so I will basically just go over the code which has changed.
We only have one new variable, and that is to keep track of the light color – in this case a white light.
var g_lightColor = [1, 1, 1, 1];
The createPhongMaterial function has changed. Instead of using the standard shader, we now load the shader from a shader file, and then set up the parameters as usual. The sampler code will be familiar to you as the code we used in the tutorial on how to load a texture. The only unfamiliar value here is the colorMult parameter which can act as a colour filter on the end resulting colour. In this example we set it to white, so that it will have no effect.
function createPhongMaterial(baseColor) { var effect = g_pack.createObject('Effect'); var shaderString = 'shaders/phongtex.shader'; o3djs.effect.loadEffect(effect, shaderString); var material = g_pack.createObject('Material'); material.drawList = g_viewInfo.performanceDrawList; material.effect = effect; effect.createUniformParameters(material); material.getParam('emissive').value = [0, 0, 0, 1]; material.getParam('ambient').value = g_math.mulScalarVector(0.1, baseColor); material.getParam('diffuse').value = g_math.mulScalarVector(0.9, baseColor); material.getParam('specular').value = [.2, .2, .2, 1]; material.getParam('shininess').value = 20; material.getParam('lightIntensity').value = g_lightColor; material.getParam('lightWorldPos').value = g_lightPosition; material.getParam('ambientIntensity').value = [0.2, 0.2, 0.2, 1]; material.getParam('colorMult').value = [1, 1, 1, 1]; var samplerParam = material.getParam('texSampler0'); g_sampler = g_pack.createObject('Sampler'); g_sampler.minFilter = g_o3d.Sampler.ANISOTROPIC; g_sampler.maxAnisotropy = 4; samplerParam.value = g_sampler; return material; }
The loadLandscape function has changed so that now we load the texture we are going to use for the terrain, and set the sampler accordingly, after which we create the shape.
function loadLandscape() { var landscapeMaterial = createPhongMaterial([0, 1, 0, 1]); o3djs.io.loadTexture(g_pack, 'tutorial19/image.png', function(texture, exception) { if (exception) { g_sampler.texture = null; } else { g_sampler.texture = texture; var landscapeShape = createLandscape(landscapeMaterial); g_landscapeTransform = g_pack.createObject('Transform'); g_landscapeTransform.addShape(landscapeShape); g_landscapeTransform.parent = g_3dRoot; landscapeShape.createDrawElements(g_pack, null); } }); }
The real fun happens in the shader though. We now have a new shader called phongtex.shader, which combines the texture shader we used previously, and adds the phong colouring components to it. The pixelShaderFunction does most of the work for the colouring, calculating the values necessary for each light component based on the position of the light and the normal of the point we are calculating for.
uniform float4x4 worldViewProjection : WORLDVIEWPROJECTION; uniform float4x4 world : WORLD; uniform float4x4 viewInverse : VIEWINVERSE; uniform float4x4 worldInverseTranspose : WORLDINVERSETRANSPOSE; uniform float3 lightWorldPos; uniform float4 ambientIntensity; uniform float4 lightIntensity; uniform float4 emissive; uniform float4 ambient; uniform float4 colorMult; uniform float4 diffuse; uniform float4 specular; uniform float shininess; sampler texSampler0; struct VertexShaderInput { float4 position : POSITION; float4 normal : NORMAL; float2 tex : TEXCOORD0; }; struct PixelShaderInput { float4 position : POSITION; float3 normal : TEXCOORD1; float3 worldPosition : TEXCOORD4; float2 tex : TEXCOORD0; }; PixelShaderInput vertexShaderFunction(VertexShaderInput input) { PixelShaderInput output; output.position = mul(input.position, worldViewProjection); float3 worldPosition = mul(input.position, world).xyz; output.normal = mul(input.normal, worldInverseTranspose).xyz; output.worldPosition = worldPosition; output.tex = input.tex; return output; } float4 pixelShaderFunction(PixelShaderInput input) : COLOR { float4 textureCooef = tex2D(texSampler0, input.tex); float3 surfaceToLight = normalize(lightWorldPos - input.worldPosition); float3 worldNormal = normalize(input.normal); float3 surfaceToView = normalize(viewInverse[3].xyz - input.worldPosition); float3 halfVector = normalize(surfaceToLight + surfaceToView); float4 litResult = lit(dot(worldNormal, surfaceToLight), dot(worldNormal, halfVector), shininess); float4 outColor = ambientIntensity * ambient * colorMult * textureCooef; outColor += lightIntensity * ((diffuse * textureCooef) * colorMult * litResult.y + specular * litResult.z); outColor += emissive; return float4(outColor.rgb, diffuse.a * colorMult.a); } // #o3d VertexShaderEntryPoint vertexShaderFunction // #o3d PixelShaderEntryPoint pixelShaderFunction // #o3d MatrixLoadOrder RowMajor
Now, our terrain should be textured, with some nice phong lighting effects as well.
Here is the full listing for the Javascript.
o3djs.require('o3djs.util'); o3djs.require('o3djs.math'); o3djs.require('o3djs.rendergraph'); o3djs.require('o3djs.canvas'); o3djs.require('o3djs.quaternions'); o3djs.require('o3djs.event'); o3djs.require('o3djs.arcball'); o3djs.require('o3djs.primitives'); o3djs.require('o3djs.picking'); o3djs.require('o3djs.io'); o3djs.require('o3djs.pack'); o3djs.require('o3djs.scene'); // Events // Run the init() function once the page has finished loading. // Run the uninit() function when the page has is unloaded. window.onload = init; window.onunload = uninit; // global variables var g_o3dElement; var g_o3d; var g_math; var g_client; var g_pack; var g_clock = 0; var g_timeMult = 1; var g_landscapeTransform; var g_textCanvas; var g_paint; var g_canvasLib; var g_3dRoot; var g_hudRoot; var g_viewInfo; var g_hudViewInfo; var g_keyPressDelta = 0.05; var g_quaternions; var g_aball; var g_thisRot; var g_lastRot; var g_dragging = false; var g_lightPosition = [10, 300, 7]; var g_lightColor = [1, 1, 1, 1]; var g_camera = { eye: [0, 200, 10], target: [0, 0, 0] }; var g_mouseX = 0; var g_mouseY = 0; var g_spinningObject = false; var g_pickedInfo; var g_treeInfo; var g_sampler; var g_backgroundCanvas; var g_backgroundRoot; var g_backgroundViewInfo; var g_backgroundCanvasLib; var g_backgroundTexture; var g_lastMouseX = 0; var g_lastMouseY = 0; var g_mouseXDelta = 0; var g_mouseYDelta = 0; var g_rotationDelta = 0.002; var g_translationDelta = 0.2; var g_mouseLocked = false; var g_lookingDir = [0, 0, 0]; var g_htmlImage; var g_heightMapCanvas; var g_heightMapCanvasContext; var g_heightMapImageData; var g_landscapeLoaded = false; var g_heightMapLoaded = false; var g_initRun = false; function createLandscape(material) { var vertexInfo = o3djs.primitives.createVertexInfo(); var positionStream = vertexInfo.addStream( 3, o3djs.base.o3d.Stream.POSITION); var normalStream = vertexInfo.addStream( 3, o3djs.base.o3d.Stream.NORMAL); var texCoordStream = vertexInfo.addStream( 2, o3djs.base.o3d.Stream.TEXCOORD, 0); var color; var avgColor; var startX = -50; var startY = 0; var startZ = -50; var XDelta = 1; var ZDelta = 1; var YMax = 30; var YMin = -30; var YDiff = YMax - YMin; var curX = startX; var curZ = startZ; var positionArray = []; var curIndex = 0; var uvCoords = [ [0, 0], [1, 0], [1, 1], [0, 1] ]; for(var i = 0; i < g_heightMapCanvas.width; i++) { for (var j = 0; j < g_heightMapCanvas.height; j++) { color = getPixelColor(i, j, g_heightMapImageData); avgColor = ((color[0] + color[1] + color[2]) / 3) / 255; positionArray[curIndex] = []; positionArray[curIndex][0] = curX; positionArray[curIndex][1] = YMin + (YDiff * avgColor); positionArray[curIndex][2] = curZ; curIndex++; curZ = curZ + ZDelta; } curX = curX + XDelta; curZ = startZ; } var vertexOffset = 0; var curPosIndex = 0; for(var i = 0; i < g_heightMapCanvas.width - 1; i++) { for (var j = 0; j < g_heightMapCanvas.height - 1; j++) { var p1 = positionArray[curPosIndex]; var p2 = positionArray[curPosIndex + g_heightMapCanvas.height]; var p3 = positionArray[curPosIndex + g_heightMapCanvas.height + 1]; var p4 = positionArray[curPosIndex + 1]; positionStream.addElementVector(p2); texCoordStream.addElementVector(uvCoords[1]); positionStream.addElementVector(p1); texCoordStream.addElementVector(uvCoords[0]); positionStream.addElementVector(p4); texCoordStream.addElementVector(uvCoords[3]); var v1 = g_math.subVector(p1, p2); var v2 = g_math.subVector(p4, p2); var normal = g_math.cross(v1, v2); normal = g_math.normalize(normal); normalStream.addElementVector(normal); normalStream.addElementVector(normal); normalStream.addElementVector(normal); vertexInfo.addTriangle(vertexOffset, vertexOffset + 1, vertexOffset + 2); vertexOffset = vertexOffset + 3; positionStream.addElementVector(p4); texCoordStream.addElementVector(uvCoords[3]); positionStream.addElementVector(p3); texCoordStream.addElementVector(uvCoords[2]); positionStream.addElementVector(p2); texCoordStream.addElementVector(uvCoords[1]); v1 = g_math.subVector(p3, p4); v2 = g_math.subVector(p2, p4); normal = g_math.cross(v1, v2); normal = g_math.normalize(normal); normalStream.addElementVector(normal); normalStream.addElementVector(normal); normalStream.addElementVector(normal); vertexInfo.addTriangle(vertexOffset , vertexOffset + 1, vertexOffset + 2); vertexOffset = vertexOffset + 3; curPosIndex++; } } return vertexInfo.createShape(g_pack, material); } function getPixelColor(x, y, imageData) { var index=(x * 4) * imageData.width + (y * 4); var colArray = []; colArray[0] = imageData.data[index]; colArray[1] = imageData.data[index+1]; colArray[2] = imageData.data[index+2]; colArray[3] = imageData.data[index+3]; return colArray; } function loadHeightMap(image) { g_heightMapCanvas=document.createElement("canvas"); g_heightMapCanvasContext=g_heightMapCanvas.getContext("2d"); g_heightMapCanvas.width= image.width; g_heightMapCanvas.height=image.height; g_heightMapCanvasContext.drawImage(image,0,0); g_heightMapImageData = g_heightMapCanvasContext.getImageData(0,0, image.width, image.height); g_heightMapLoaded = true; } function loadLandscape() { // Create a Material for the mesh. var landscapeMaterial = createPhongMaterial([0, 1, 0, 1]); o3djs.io.loadTexture(g_pack, 'tutorial19/image.png', function(texture, exception) { if (exception) { g_sampler.texture = null; } else { g_sampler.texture = texture; // Create the Shape for the landscape mesh and assign its material. var landscapeShape = createLandscape(landscapeMaterial); // Create a new transform and parent the Shape under it. g_landscapeTransform = g_pack.createObject('Transform'); g_landscapeTransform.addShape(landscapeShape); // Parent the landscape's transform to the client root. g_landscapeTransform.parent = g_3dRoot; // Generate the draw elements for the landscape shape. landscapeShape.createDrawElements(g_pack, null); } }); } /** * Creates a phong material based on the given single color. * @param {Array} baseColor An array with 4 entries, the R,G,B, and A components * of a color. * @return {Material} A phong material whose overall pigment is baseColor. */ function createPhongMaterial(baseColor) { // Load effect var effect = g_pack.createObject('Effect'); var shaderString = 'shaders/phongtex.shader'; o3djs.effect.loadEffect(effect, shaderString); // Create a new, empty Material object. var material = g_pack.createObject('Material'); material.drawList = g_viewInfo.performanceDrawList; material.effect = effect; effect.createUniformParameters(material); // Assign parameters to the phong material. material.getParam('emissive').value = [0, 0, 0, 1]; material.getParam('ambient').value = g_math.mulScalarVector(0.1, baseColor); material.getParam('diffuse').value = g_math.mulScalarVector(0.9, baseColor); material.getParam('specular').value = [.2, .2, .2, 1]; material.getParam('shininess').value = 20; material.getParam('lightIntensity').value = g_lightColor; material.getParam('lightWorldPos').value = g_lightPosition; material.getParam('ambientIntensity').value = [0.2, 0.2, 0.2, 1]; material.getParam('colorMult').value = [1, 1, 1, 1]; var samplerParam = material.getParam('texSampler0'); g_sampler = g_pack.createObject('Sampler'); g_sampler.minFilter = g_o3d.Sampler.ANISOTROPIC; g_sampler.maxAnisotropy = 4; samplerParam.value = g_sampler; return material; } //Event handler for the mousedown event function mouseDown(e) { if (e.button == 0) { var worldRay = o3djs.picking.clientPositionToWorldRay( e.x, e.y, g_viewInfo.drawContext, g_client.width, g_client.height); g_treeInfo.update(); g_pickedInfo = g_treeInfo.pick(worldRay); if (g_pickedInfo) { g_spinningObject = true; } } else { g_lastRot = g_thisRot; g_aball.click([e.x, e.y]); g_dragging = true; } g_mouseLocked = !g_mouseLocked } //Event handler for the mousemove event function mouseMove(e) { g_lastMouseX = g_mouseX; g_lastMouseY = g_mouseY; g_mouseX = e.x; g_mouseY = e.y; g_mouseXDelta = g_mouseX - g_lastMouseX; g_mouseYDelta = g_mouseY - g_lastMouseY; if (g_mouseLocked) { var viewDir = g_math.subVector(g_camera.target, g_camera.eye); var rotatedViewDir = []; rotatedViewDir[0] = (Math.cos(g_mouseXDelta * g_rotationDelta) * viewDir[0]) - (Math.sin(g_mouseXDelta * g_rotationDelta) * viewDir[2]); rotatedViewDir[1] = viewDir[1]; rotatedViewDir[2] = (Math.cos(g_mouseXDelta * g_rotationDelta) * viewDir[2]) + (Math.sin(g_mouseXDelta * g_rotationDelta) * viewDir[0]); viewDir = rotatedViewDir; rotatedViewDir[0] = viewDir[0]; rotatedViewDir[1] = (Math.cos(g_mouseYDelta * g_rotationDelta * -1) * viewDir[1]) - (Math.sin(g_mouseYDelta * g_rotationDelta * -1) * viewDir[2]); rotatedViewDir[2] = (Math.cos(g_mouseYDelta * g_rotationDelta * -1) * viewDir[2]) + (Math.sin(g_mouseYDelta * g_rotationDelta * -1) * viewDir[1]); g_lookingDir = rotatedViewDir; g_camera.target = g_math.addVector(rotatedViewDir, g_camera.eye); g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye, g_camera.target, [0, 1, 0]); } } //Event handler for the mouseup event function mouseUp(e) { g_dragging = false; g_spinningObject = false; } //Even handler for the scroll button function scrollMe(e) { if (e.deltaY) { var view = g_math.subVector(g_camera.eye, g_camera.target); view = g_math.mulScalarVector((e.deltaY < 0 ? 11 : 13) / 12, view); g_camera.eye = g_math.addVector(view, g_camera.target); g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye, g_camera.target, [0, 1, 0]); } } // Updates the transform info for our scene function updateInfo() { if (!g_treeInfo) { g_treeInfo = o3djs.picking.createTransformInfo(g_3dRoot, null); } g_treeInfo.update(); } function drawText(str) { g_textCanvas.canvas.clear([0.5, 0.5, 0.5, 0.5]); // Reuse the global paint object var paint = g_paint; paint.color = [1, 1, 1, 1]; paint.textSize = 12; paint.textTypeface = 'Comic Sans MS'; paint.textAlign = g_o3d.CanvasPaint.LEFT; paint.shader = null; g_textCanvas.canvas.drawText(str, 10, 30, paint); g_textCanvas.updateTexture(); } /** * This method gets called every time O3D renders a frame. Here's * where we update the landscape's transform to make it spin. * @param {o3d.RenderEvent} renderEvent The render event object that * gives us the elapsed time since the last time a frame was rendered. */ function renderCallback(renderEvent) { g_clock += renderEvent.elapsedTime * g_timeMult; g_camera.eye drawText("(" + (Math.round(g_camera.eye[0] * 100) / 100) + "," + (Math.round(g_camera.eye[1] * 100) / 100) +"," + (Math.round(g_camera.eye[2] * 100) / 100) + ") " + "(" + (Math.round(g_lookingDir[0] * 100) / 100) + "," + (Math.round(g_lookingDir[1] * 100) / 100) +"," + (Math.round(g_lookingDir[2] * 100) / 100) + ")"); if (g_spinningObject) { var pickTrans = g_pickedInfo.shapeInfo.parent.transform; pickTrans.rotateX(0.05); pickTrans.rotateY(0.05); } updateInfo(); } /** * Function performing the rotate action in response to a key-press. * Rotates the scene based on key pressed. (w ,s, a, d). Note that the * x,y-axis referenced here are relative to the current view of scene. * @param {keyPressed} The letter pressed, in lower case. * @param {delta} The angle by which the scene should be rotated. * @return true if an action was taken. */ function keyPressedAction(keyPressed, delta) { var actionTaken = false; switch(keyPressed) { case 'a': var eyeOriginal = g_camera.eye; var targetOriginal = g_camera.target; var viewEye = g_math.subVector(g_camera.eye, g_camera.target); var viewTarget = g_math.subVector(g_camera.target, g_camera.eye); viewEye = g_math.addVector([g_translationDelta * -1, 0, 0], viewEye); viewTarget = g_math.addVector([g_translationDelta * -1, 0, 0], viewTarget); g_camera.eye = g_math.addVector(viewEye, targetOriginal); g_camera.target = g_math.addVector(viewTarget, eyeOriginal); g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye, g_camera.target, [0, 1, 0]); actionTaken = true; break; case 'd': var eyeOriginal = g_camera.eye; var targetOriginal = g_camera.target; var viewEye = g_math.subVector(g_camera.eye, g_camera.target); var viewTarget = g_math.subVector(g_camera.target, g_camera.eye); viewEye = g_math.addVector([g_translationDelta, 0, 0], viewEye); viewTarget = g_math.addVector([g_translationDelta, 0, 0], viewTarget); g_camera.eye = g_math.addVector(viewEye, targetOriginal); g_camera.target = g_math.addVector(viewTarget, eyeOriginal); g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye, g_camera.target, [0, 1, 0]); actionTaken = true; break; case 'w': var view = g_math.subVector(g_camera.eye, g_camera.target); view = g_math.mulScalarVector( 11 / 12, view); g_camera.eye = g_math.addVector(view, g_camera.target); g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye, g_camera.target, [0, 1, 0]); actionTaken = true; break; case 's': var view = g_math.subVector(g_camera.eye, g_camera.target); view = g_math.mulScalarVector( 13 / 12, view); g_camera.eye = g_math.addVector(view, g_camera.target); g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye, g_camera.target, [0, 1, 0]); actionTaken = true; break; } return actionTaken; } /** * Callback for the keypress event. * Invokes the action to be performed for the key pressed. * @param {event} keyPress event passed to us by javascript. */ function keyPressedCallback(event) { event = event || window.event; // Ignore accelerator key messages. if (event.metaKey) return; var keyChar =String.fromCharCode(o3djs.event.getEventKeyChar(event)); // Just in case they have capslock on. keyChar = keyChar.toLowerCase(); if (keyPressedAction(keyChar, g_keyPressDelta)) { o3djs.event.cancel(event); } } /** * Creates the client area. */ function init() { o3djs.util.makeClients(initStep2, 'LargeGeometry'); } /** * Initializes O3D. * @param {Array} clientElements Array of o3d object elements. */ function initStep2(clientElements) { // Initializes global variables and libraries. g_o3dElement = clientElements[0]; g_client = g_o3dElement.client; g_o3d = g_o3dElement.o3d; g_math = o3djs.math; g_quaternions = o3djs.quaternions; // Initialize O3D sample libraries. o3djs.base.init(g_o3dElement); // Create a pack to manage the objects created. g_pack = g_client.createPack(); //Create the arcball which is used for the rotation g_aball = o3djs.arcball.create(400, 400); //Initialise rotation matrixes g_lastRot = g_math.matrix4.identity(); g_thisRot = g_math.matrix4.identity(); // Create 2 root transforms, one for the 3d parts and 2d parts. // This is not strictly neccassary but it is helpful. g_3dRoot = g_pack.createObject('Transform'); g_hudRoot = g_pack.createObject('Transform'); g_backgroundRoot = g_pack.createObject('Transform'); // Create the render graph for a view. g_viewInfo = o3djs.rendergraph.createBasicView( g_pack, g_3dRoot, g_client.renderGraphRoot); // Create a second view for the hud. g_hudViewInfo = o3djs.rendergraph.createBasicView( g_pack, g_hudRoot, g_client.renderGraphRoot); // Turn off clearing the color for the hud since that would erase the // 3d parts but leave clearing the depth and stencil so the HUD is // unaffected by anything done by the 3d parts. g_hudViewInfo.clearBuffer.clearColorFlag = false; g_viewInfo.clearBuffer.clearColorFlag = false; // Create a view for the background. g_backgroundViewInfo = o3djs.rendergraph.createBasicView( g_pack, g_backgroundRoot, g_client.renderGraphRoot); // Make sure the background gets drawn first g_viewInfo.root.priority = g_backgroundViewInfo.root.priority + 1; // Make sure the hud gets drawn after the 3d stuff g_hudViewInfo.root.priority = g_viewInfo.root.priority + 1; //g_backgroundViewInfo.root.priority + 5; // Set up a perspective view g_viewInfo.drawContext.projection = g_math.matrix4.perspective( g_math.degToRad(30), // 30 degree fov. g_client.width / g_client.height, 1, // Near plane. 5000); // Far plane. // Set up our view transformation to look towards the world origin // where the landscape is located. g_viewInfo.drawContext.view = g_math.matrix4.lookAt(g_camera.eye, //eye g_camera.target, // target [0, 1, 0]); // up //Set up the 2d orthographic view g_hudViewInfo.drawContext.projection = g_math.matrix4.orthographic( 0 + 0.5, g_client.width + 0.5, g_client.height + 0.5, 0 + 0.5, 0.001, 1000); g_hudViewInfo.drawContext.view = g_math.matrix4.lookAt( [0, 0, 1], // eye [0, 0, 0], // target [0, 1, 0]); // up //Set up the 2d orthographic view g_backgroundViewInfo.drawContext.projection = g_math.matrix4.orthographic( 0 + 0.5, g_client.width + 0.5, g_client.height + 0.5, 0 + 0.5, 0.001, 1000); g_backgroundViewInfo.drawContext.view = g_math.matrix4.lookAt( [0, 0, 1], // eye [0, 0, 0], // target [0, 1, 0]); // up // Create the global paint object that's used by draw operations. g_paint = g_pack.createObject('CanvasPaint'); // Creates an instance of the canvas utilities library. g_canvasLib = o3djs.canvas.create(g_pack, g_hudRoot, g_hudViewInfo); // Create a canvas that will be used to display the text. g_textCanvas = g_canvasLib.createXYQuad(0, 0, 0, 400, 50, true); g_backgroundCanvasLib = o3djs.canvas.create(g_pack, g_backgroundRoot, g_backgroundViewInfo); g_backgroundCanvas = g_backgroundCanvasLib.createXYQuad(0, 0, 0, g_client.width, g_client.height, true); g_backgroundCanvas.canvas.clear([0, 0, 0, 1]); o3djs.io.loadTexture(g_pack, 'tutorial19/bg.jpg', function(texture, exception) { if (exception) { alert(exception); } else { if (g_backgroundTexture) { g_pack.removeObject(g_backgroundTexture); } g_backgroundTexture = texture; g_backgroundCanvas.canvas.drawBitmap(g_backgroundTexture, 0, g_client.width); g_backgroundCanvas.updateTexture(); } }); if (g_heightMapLoaded == true) { loadLandscape(); } // Set our render callback for animation. // This sets a function to be executed every time frame is rendered. g_client.setRenderCallback(renderCallback); //Set up a callback to interpret keypresses window.document.onkeypress = keyPressedCallback; //Set up mouse events o3djs.event.addEventListener(g_o3dElement, 'mousedown', mouseDown); o3djs.event.addEventListener(g_o3dElement, 'mousemove', mouseMove); o3djs.event.addEventListener(g_o3dElement, 'mouseup', mouseUp); o3djs.event.addEventListener(g_o3dElement, 'wheel', scrollMe); g_initRun = true; } /** * Removes callbacks so they aren't called after the page has unloaded. */ function uninit() { if (g_client) { g_client.cleanup(); } }
Comments